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A continuous adjoint formulation for the computation of
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SUMMARY

Topology optimization of fluid dynamic systems is a comparatively young optimal design technique. Its
central ingredient is the computation of topological sensitivity maps. Whereas, for finite element solvers,
implementations of such sensitivity maps have been accomplished in the past, this study focuses on
providing this functionality within a professional finite volume computational fluid dynamics solver. On the
basis of a continuous adjoint formulation, we derive the adjoint equations and the boundary conditions for
typical cost functions of ducted flows and present first results for two- and three-dimensional geometries.
Emphasis is placed on the versatility of our approach with respect to changes in the objective function. We
further demonstrate that surface sensitivity maps can also be computed with the implemented functionality
and establish their connection with topological sensitivities. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid dynamic optimal design problems are ubiquitous in the aerospace, automotive and marine
industries. The developed methodologies range from bionic algorithms over gradient-based search
to surrogate modelling. In the case of gradient-based optimization, the so-called adjoint method
has long been identified as the method of choice for the computation of sensitivities. It allows for
computing the complete gradient with the effort of only two solver calls—primal and adjoint—
independent of the search space dimension. The success of this method is manifested by the large
number of publications on adjoint-based optimization in fluid dynamics ([1–5] and references
therein) and also in structure mechanics ([6] and references therein).
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While those works focused mostly on shape optimization of external aerodynamics, this study
is dedicated to ducted flows. For this kind of flows, a very powerful optimization method recently
emerged: fluid dynamic topology optimization [7]. Here, as opposed to conventional shape opti-
mization, the geometry is not described via a parametrized surface, but with a volume mesh of
the entire installation space. An adjoint method is then employed to compute whether a fluid
cell is favourable or counterproductive for the flow in terms of the chosen cost function. After
several iterations of punishing the identified counterproductive cells via a momentum loss term,
which is commonly realized by individual cell porosities, the optimal topology finally emerges as
a collection of non-punished volume cells.

The central ingredient for fluid dynamic topology optimization is the computation of topological
sensitivities. For finite element solvers, a number of realizations of such a functionality exist
already [8–13], extending the pioneering work of Borrvall and Petersson [7]. However, for the
workhorse codes of industrial computational fluid dynamics (CFD), namely finite volume solvers,
deriving topological sensitivity information for ducted flows has not yet gone beyond the level of
proof-of-concept studies [14, 15]. The aim of this study is, therefore, to provide the theoretical
basis for the implementation of sensitivity maps into a professional, finite volume CFD solver and
to demonstrate its functioning with some instructive numerical examples.

The first question to be addressed when implementing an adjoint into a finite volume solver is
whether to use the discrete or the continuous approach [16]: Following the continuous adjoint, one
starts from the linearized primal equations in their analytical form, derives the adjoint equations
analytically and then discretizes them to obtain the adjoint code. Alternatively, the discrete approach
is operating on code level: It linearizes the discretized primal equations, transposes them and adds
appropriate source terms in order to arrive at the adjoint code. This procedure can be automated
to a certain degree by the so-called automatic differentiation techniques (e.g. [17, 18]).

The respective advantages and disadvantages of these two alternatives are the subject of ongoing
discussions (see, e.g. [16] for a comparison), and we will not dwell on that any further. We
opted for the continuous adjoint because of the following reasons: The software environment that
we chose for the implementation (OpenFOAM—Open Field Operation And Manipulation [19])
offers object-oriented implementations of differential operators, which can be called upon on any
kind of computational mesh and utilized in an abstract fashion. This makes the implementation
of a continuous adjoint very straightforward [20]. In addition, by formulating the equations and
boundary conditions in a way that can quickly be adapted to a broad range of objective functions,
we were able to overcome the general disadvantage of the continuous approach of tedious code
adaptations to different objective functions.

In the following, the theory underlying our implementation of a continuous adjoint into the
professional finite volume solver OpenFOAM for the computation of sensitivities of ducted flows
is presented. It constitutes the basis for all future extensions of this new functionality. A crucial
component for continuous adjoints is the choice of the correct boundary conditions and their
adaptation to different objective functions. To that end, special emphasis is placed on the derivation
of the adjoint boundary conditions and to their versatility with respect to changes in the cost
function. The paper is organized as follows: In Section 2, we first demonstrate how topological
sensitivities can be computed via a continuous adjoint, derive the governing adjoint equations
and boundary conditions, and show examples of topological sensitivities for two different cost
functions. As a by-product of our implementation, the adjoint solver also allows one to compute
surface sensitivities. This is presented in Section 3, which closes with an example of a surface
sensitivity map computed by OpenFOAM.
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2. TOPOLOGICAL SENSITIVITIES

If J stands for the cost function to be minimized, the optimization problem can be stated as follows:

minimize J = J (�,v, p) subject to R(�,v, p)=0 (1)

where v and p stand for velocity and pressure, respectively, and � represents the design variables,
i.e. the porosity distribution. R=(R1, R2, R3, R4)

T denote the state equations, in our case the
incompressible, steady-state Navier–Stokes equations:

(R1, R2, R3)
T=(v ·∇)v+∇ p−∇ ·(2�D(v))+�v (2)

R4=−∇ ·v (3)

with kinematic viscosity � and the rate of strain tensor D(v)= 1
2 (∇v+(∇v)T). In order to accom-

modate eddy viscosity turbulence models, we understand � as the sum of molecular and turbulent
viscosities. The inclusion of the Darcy term �v allows for punishing counterproductive cells—the
central component of topology optimization.

We thus have a constrained optimization problem, with the constraints being the state equations.
Such problems are commonly tackled by introducing a Lagrange function L and reformulating the
cost function as

L := J+
∫

�
(u,q)Rd� (4)

where � stands for the flow domain. As Lagrange multipliers

(u,q)=(u1,u2,u3,q) (5)

we have introduced the adjoint velocity u and the adjoint pressure q , respectively. For the desired
sensitivities of the cost function w.r.t. the design variables �, we have to compute the total variation
of L:

�L=��L+�vL+�pL (6)

Since changes in � entail—by virtue of the state equations—variations of the flow field, the total
variation of L also includes contributions from the changes in v and p. Computing the sensitivities
straightaway from Equation (6) would therefore require to solve the state equations once for each
design variable. If, however, the Lagrange multipliers u and q are chosen such that the variation
w.r.t. the state variables vanishes identically,

�vL+�pL=0 (7)

the sensitivities can be computed simply from

�L=��L=�� J+
∫

�
(u,q)��Rd� (8)

which involves only relatively cheap derivatives w.r.t. �. This procedure thus constitutes an enor-
mous saving in computational effort and is the central element of the so-called ‘adjoint method’
(see, e.g. [1–6]).
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Following Equation (8), the sensitivity of the cost function w.r.t. the porosity �i of cell i can
be computed as

�L
��i

= �J
��i

+
∫

�
(u,q)

�R
��i

d� (9)

For the methodology of topology optimization, the porosity is just an auxiliary variable to describe
a continuous transition from fluid to solid, and usually there is no explicit dependence of the cost
function on the porosity: �J/��i =0. Furthermore, as the porosity �i enters the primal equation
system only in cell i and only via the Darcy term, we can express

�R
��i

=
(v
0

)
�i (10)

with �i being the characteristic function of cell i . According to Equation (9), we can finally
compute the desired sensitivity for each cell as the dot product of adjoint and primal velocity times
the cell volume:

�L
��i

=ui ·vi Vi (11)

Hence, in order to compute topological sensitivities, all we need apart from the primal solution is
the adjoint velocity distribution u. As stated above, the adjoint quantities u and q are defined by
the requirement that the state variable contribution to the variation of L vanishes. The governing
equation system for the adjoint variables and their boundary conditions are therefore to be derived
from Equation (7), which will be done in the following section.

2.1. Derivation of adjoint equations and boundary conditions

The starting point for the derivation of the adjoint equation system is Equation (7)—the vanishing
of the variation of L w.r.t. the state variables. Following the definition of the Lagrange function,
Equation (4), this requirement reads

�v J+�p J+
∫

�
(u,q)�vRd�+

∫
�
(u,q)�pRd�=0 (12)

If the state equations R are the incompressible Navier–Stokes equations (2) and (3), the derivatives
w.r.t. v and p can be computed straightforwardly as

�v(R1, R2, R3)
T=(�v ·∇)v+(v ·∇)�v−∇ ·(2�D(�v))+��v (13)

�vR4=−∇ ·�v (14)

�p(R1, R2, R3)
T=∇�p (15)

�p R4=0 (16)

Here, we have neglected the variation of the eddy viscosity �. This is correct only for laminar
flow regimes. For turbulent flows, neglecting this variation constitutes a common approximation,
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which is known as ‘frozen turbulence’ [21]. With these derivatives, Equation (12) now reads

�v J+�p J+
∫

�
d�u·((�v ·∇)v+(v ·∇)�v−∇ ·(2�D(�v))+��v)

−
∫

�
d�q∇ ·�v+

∫
�
d�u·∇�p=0 (17)

After integration by parts and decomposition of the cost function J into contributions from the
boundary �=�� and from the interior of �,

J =
∫

�
J� d�+

∫
�
J� d� (18)

we can finally reformulate Equation (17) as follows:∫
�
d�

(
u·n+ �J�

�p

)
�p+

∫
�
d�

(
−∇ ·u+ �J�

�p

)
�p

+
∫

�
d�

(
n(u·v)+u(v ·n)+2�n·D(u)−qn+ �J�

�v

)
·�v−

∫
�
d�2�n·D(�v) ·u

+
∫

�
d�

(
−∇u·v−(v ·∇)u−∇ ·(2�D(u))+�u+∇q+ �J�

�v

)
·�v=0 (19)

This equation has to be fulfiled for any �v and �p that satisfy the primal Navier–Stokes equations,
which can in general be accomplished only if the integrals vanish individually. For the integrals
over the domain, this requirement gives rise to the adjoint equations, whereas the adjoint boundary
conditions can be deduced from the vanishing of the boundary integrals.

From Equation (19), we thus derive the adjoint Navier–Stokes equations as follows:

−2D(u)v=−∇q+∇ ·(2�D(u))−�u− �J�
�v

(20)

∇ ·u= �J�
�p

(21)

where we have expressed −∇u·v−(v ·∇)u as −2D(u)v.
As boundary conditions for adjoint velocity and pressure, we deduce from Equation (19) that∫

�
d�

(
n(u·v)+u(v ·n)+2�n·D(u)−qn+ �J�

�v

)
·�v−

∫
�
d�2�n·D(�v) ·u=0 (22)

∫
�
d�

(
u·n+ �J�

�p

)
�p=0 (23)

This is the general form of the adjoint equation system for the steady-state, incompressible
Navier–Stokes equations with Darcy porosity and frozen turbulence. Albeit linear by defini-
tion, the structure of the adjoint Navier–Stokes equations is very similar to that of the primal
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equations. Moreover, a large variety of cost functions for ducted as well as external flows, such
as pressure drop or drag, are surface integrals over the domain boundary. They do not contain
a contribution from the domain interior (J� =0). Hence, for this type of objective function, the
adjoint flow field is also divergenceless, much as the primal one. The dominant difference between
primal and adjoint equations is, however, the minus sign in front of the convective term of Equa-
tion (20). It states that adjoint information is convected upstream of the primal flow rather than
downstream.

2.2. Specialization to ducted flows

After having derived the general form of the adjoint equations and boundary conditions, this section
is dedicated to their specialization to ducted flows. For this kind of flow regimes, the flow domain
boundary � is made up of three portions—inlet, outlet and wall, where the following conditions
are commonly imposed on the state variables: prescribed velocity and zero pressure gradient in
the inlet, zero velocity gradient and zero pressure at the outlet, and a no-slip condition and zero
pressure gradient along the wall.

As already stated above, typical objective functions of ducted flows involve only integrals over
the surface of the flow domain rather than over its interior. In that case, the adjoint equations (20)
and (21) reduce to

−2D(u)v=−∇q+∇ ·(2�D(u))−�u (24)

∇ ·u=0 (25)

Note that the adjoint equation system does not depend on the cost function anymore. Therefore,
when switching from one optimization objective to another, the solver remains unchanged, and
only the boundary conditions have to be adapted to the specific cost function.

Before we discuss the adjoint boundary conditions in detail, we will elaborate a bit on the
boundary terms of Equation (22) that involve the rate of strain tensor D. For divergenceless fields
�v and u with at least one of them vanishing on ��, it can be shown that the following relation
holds:

∫
�
d�2�n·(D(u) ·�v−D(dv) ·u) =

∫
�
d��((n·∇)u·�v−(n·∇)dv ·u)

−
∫

�
d�∇�·(un�v−�vnu) (26)

where un =u·n and vn =v ·n are the normal components of adjoint and primal velocities, respec-
tively.

For laminar flows, � contains only the molecular viscosity, and its gradient obviously vanishes.
Still for turbulent flows, ∇�=0 along the wall and—for homogeneously prescribed degrees of
turbulence—also at the inlet. In the outlet area, ∇� is in general non-zero. However, we assume
its product with the difference term in brackets in Equation (26) to be of second order. For
the remainder of the derivation, we will therefore neglect the second integral of Equation (26).
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Boundary conditions (22) and (23) then reduce to

∫
�
d�

(
n(u·v)+u(v ·n)+�(n·∇)u−qn+ �J�

�v

)
·�v−

∫
�
d��(n·∇)�v ·u=0 (27)

∫
�
d�

(
u·n+ �J�

�p

)
�p=0 (28)

These conditions will now be evaluated for the inlet, wall and outlet portions of the domain
boundary, in order to deduce the boundary conditions for the adjoint variables, thereby making
use of the fact that the admissible perturbations �v and �p are such that the perturbed quantities
v+�v and p+�p satisfy the primal equation system.

2.2.1. Wall and inlet. On these parts of �, the primal velocity is usually fixed: to zero (no-slip
condition on the wall) and to its prescribed value at the inlet, respectively. We therefore have
�v=0 here, and the first integral of Equation (27) cancels. From

0=∇ ·�v=(n·∇)�vn+∇‖ ·�vt (29)

and �vt =0 along the wall and inlet—with ∇‖ and vt being the in-plane components of ∇ and v,
respectively—we conclude that

(n·∇)�vn =0 (30)

and hence

(n·∇)�v=(n·∇)�vt (31)

Equations (27) and (28) thus reduce to∫
�
d��(n·∇)�vt ·ut =0 (32)

∫
�
d�

(
u·n+ �J�

�p

)
�p=0 (33)

from which we conclude the boundary conditions for the adjoint velocity at the wall and inlet:

ut =0 (34)

un =−�J�
�p

(35)

Note that these derivations do not impose a condition for the adjoint pressure q . Since the adjoint
pressure q enters the adjoint Navier–Stokes equations in a similar way as its primal counterpart p
enters the primal Navier–Stokes equations, the zero gradient boundary condition of p at the wall
and inlet is applied to q as well, in order to assure the well posedness of the adjoint equation
system.
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2.2.2. Outlet. The typical primal outlet conditions are zero velocity gradient and zero pressure:

(n·∇)�v and p=0 (36)

The second integral of Equation (27) therefore cancels, and with �p=0 Equation (28) is identically
fulfilled. The only remaining term is thus the first integral of Equation (27), which can be made
to cancel by enforcing the integrand to vanish:

n(u·v)+u(v ·n)+�(n·∇)u−qn+ �J�
�v

=0 (37)

Decomposition of Equation (37) into its normal and tangential components yields

u·v+unvn+�(n·∇)un−q+ �J�
�vn

=0 (38)

vnut +�(n·∇)ut + �J�
�vt

=0 (39)

The normal component (38) can be satisfied by choosing the adjoint pressure q accordingly

q=u·v+unvn+�(n·∇)un+ �J�
�vn

(40)

whereas the tangential component (39) is used to determine the tangential component of the adjoint
velocity ut . For the gradient of the normal component un , continuity then implies that

(n·∇)un =∇ ·u−∇‖ ·ut =−∇‖ ·ut (41)

This completes the adjoint boundary conditions for ducted flows. Before we evaluate them in
the following two sections for two cost function examples, let us summarize the findings of our
derivation—the adjoint Navier–Stokes equations and the adjoint boundary conditions for ducted
flow optimization:

Adjoint Navier–Stokes equations:

−2D(u)v=−∇q+∇ ·(2�D(u))−�u (42)

∇ ·u=0 (43)

Adjoint boundary conditions for the wall and inlet:

ut =0 (44)

un =−�J�
�p

(45)

n·∇q=0 (46)

Adjoint boundary conditions for the outlet:

q=u·v+unvn+�(n·∇)un+ �J�
�vn

(47)

0=vnut +�(n·∇)ut + �J�
�vt

(48)
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2.3. Example 1: Dissipated power

The power dissipated by a fluid dynamic device can be computed as the net inward flux of energy,
i.e. total pressure, through the device boundaries:

J :=−
∫

�
d�

(
p+ 1

2
v2

)
v ·n (49)

For this cost function, we obviously have

J� =0 and J� =−(p+ 1
2v

2)v ·n (50)

The derivatives needed for the boundary conditions are

�J�
�p

=−v ·n and
�J�
�v

=−(p+ 1
2v

2)n−(v ·n)v (51)

From Equations (44) and (45), we thus obtain for the adjoint velocity at the wall and inlet

ut =0 (52)

un =
{
0 at wall

vn at inlet
(53)

whereas according to Equations (47) and (48), the outlet conditions are

q=u·v+unvn+�(n·∇)un− 1
2v

2−v2n (54)

0=vn(ut −vt )+�(n·∇)ut (55)

Figure 1 illustrates the sensitivities thus obtained for a simple two-dimensional (2D) test case
with 100×100 Cartesian grid cells. At a Reynolds number of 1000, the flow enters the box through
an inlet on the south wall and leaves it through an outlet on the east wall. The sensitivities of the cells
that are favourable for the flow (i.e. those with positive values of �J/��i ) and the counterproductive
cells are shown separately in Figures 1(a) and (b). As expected, the most important cells for the
flow passage lie along the main path, whereas the most prominent counterproductive cells are
located in the main backflow region.

The sensitivity distributions of Figure 1 reproduce those of Othmer et al. [15], who applied an
AD-based adjoint code to the same geometry (their Figure 3), and a finite difference check of
the sensitivities (Figure 2) confirms the validity of the implementation. The inaccuracies of the
adjoint-based sensitivities as apparent from Figure 2 are presumably caused by the approximations
in the adjoint derivation (i.e. neglecting the second-order term in Equation (26)) and the frozen
turbulence assumption. For a detailed quantitative study of the effect of frozen turbulence on the
accuracy of adjoint-based gradients, we refer to the recent work by Dwight and Brezillon [21].

How such topological sensitivity maps can be employed in conjunction with a gradient-based
algorithm for the topological optimization of fluid dynamic problems was already demonstrated
[8–12]. Those works identified Svanberg’s method of moving asymptotes [22] as being highly
efficient for this kind of optimization problems. For an in-depth study of the optimization itself,
we therefore refer to those studies and rather focus on the computation of sensitivities for a second
cost function.
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870 C. OTHMER

Figure 1. Box test case for dissipated power: (a) sensitivities of favourable cells and (b) sensitivities of
counterproductive cells. The dots in (a) depict the locations of the finite difference check of Figure 2.

Figure 2. Finite difference check of computed sensitivities: magnitude of the relative error between
adjoint-based sensitivities and those computed via finite differences for various values of the step size �
(squares: point 1 of Figure 1(a), triangles: point 2). A step size of �=0.1 appears to be a good choice,

as below, the round-off error becomes dominant.

2.4. Example 2: Flow uniformity at the outlet

Apart from the dissipated power, the uniformity of the flow upon leaving the outlet plane is an
important design criterion of, e.g. automotive air ducts. It is related to the efficiency of distributing
fresh air inside the car and thus to passenger comfort. This objective can be captured by a cost
function of the form:

J :=
∫
outlet

d�
c

2
(v−vd)2 (56)

where vd is the desired velocity in the outlet plane and c=1m−2 s−1 is a constant used for unit
consistency. There is no contribution to the cost function either from the domain itself or from the
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inlet and wall:

J� =0 (57)

J� =
⎧⎨
⎩
0 at wall and inlet
c

2
(v−vd)2 at outlet

(58)

Consequently, we obtain u=0 as the velocity boundary condition for the wall and inlet. For the
outlet, we compute the required derivatives as

�J�
�vn

=c(vn−vdn) and
�J�
�vt

=c(vt −vdt ) (59)

and arrive according to Equations (47) and (48) at the following boundary conditions:

q=u·v+unvn+�(n·∇)un+c(vn−vdn) (60)

0=vnut +�(n·∇)ut +c(vt −vdt ) (61)

Note that the difference between actual and desired velocities v−vd acts as a ‘source term’ in the
outlet boundary conditions.

For the 2D box example of the previous section, Figure 3(a) shows the sensitivities obtained
in this way. The desired outlet velocity was chosen to be vd=(vdx ,v

d
y)

T=(1,0)T. The stripe in
Figure 3(b) displays the deviation from the optimal velocity distribution along the eastern boundary,
i.e. the difference �vn :=vn−vdn between actual and desired velocities. As expected, the cells along
the flow lines with above-average outlet velocities (�vn>0, blue in Figure 3(b)) have negative
sensitivities (�J/��<0, blue in Figure 3(a)); in other words, their punishment via a finite porosity
would improve the uniformity. Conversely, the cells with positive sensitivities (red) are located on
flow lines with below-average outlet velocities.

Figure 3. Box test case for outlet flow uniformity: (a) flow field and sensitivities (blue: �J/��<0, i.e.
their punishment improves the uniformity, red: �J/��>0, green: sensitivity close to zero) and (b) the

deviation from uniformity, �vn =vn−vdn , taken along the eastern wall (blue: �vn>0, red: �vn<0).
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3. SURFACE SENSITIVITIES

In the preceding sections, we have introduced an adjoint-based methodology for the computation
of topological sensitivities. The fact that such sensitivities represent an efficient tool for generating
optimal duct designs was demonstrated in several publications [8–15]. An inherent feature of
topology optimization is, however, the ragged surface of the resulting geometries. A CFD compu-
tation on such a geometry can obviously not be as accurate as on a body-fitted mesh. Therefore, the
virtue of topology optimization lies rather in the efficient drafting of designs than in geometrical
fine-tuning. For the latter, optimization methodologies operating directly on the shape have to
be employed. With a view to maximizing the design freedom, allowed shape modifications can
efficiently be described as a superposition of localized surface normal displacements �, an idea
first introduced by Pironneau [23]. The cost function variation incurred by such perturbations can
be computed analogously to Equation (8) as

��L=�� J+��

∫
�
(u,q)Rd� (62)

where R stands again for the residuals of the Navier–Stokes equations (2) and (3), omitting,
however, the Darcy term, which is not needed for shape optimization.

The first term of Equation (62) represents the explicit dependence of the cost function on
the design variables. If the objective function involves integrals over the surface that is to be
optimized, this term does not vanish—as opposed to the case of topological optimization (cf.
Section 2). It can, however, be computed in a straightforward manner by purely geometric consid-
erations on the primal flow field. The evaluation of the second term of Equation (62) is more
elaborate: It requires not only the adjoint solution but also metrics information for the evalua-
tion of the impact of surface perturbations on the Navier–Stokes residuals [4]. A ‘metrics-free’
and therefore more straightforward methodology of computing this term was introduced by Soto
and Löhner [5]: They recast the volume integral of Equation (62) as a boundary integral and,
thus, reduce the computation of this term to a pure post-processing of the primal and the adjoint
fields. As will be shown in the following, this intriguing methodology allows us to compute
surface sensitivities from the very same results that are required for the computation of topological
sensitivities.

By making use of the fact that for any admissible variation of v and p the total variation of R
vanishes,

�R=0 ⇔ ��R+�vR+�pR=0 (63)

we can recast the sensitivity of Equation (62) as follows:

��L=�� J−
∫

�
(u,q)�vRd�−

∫
�
(u,q)�pRd� (64)

The last two integrals already showed up in the derivation of the adjoint equations (see
Equation (12)). Besides the terms involving the cost function, they actually make up the
adjoint equation system. For the reformulation of these terms, we can therefore directly take
over the results obtained in Equation (19) of Section 2.1 and just leave out the cost function
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contribution:

��L = �� J−
∫

�
d�u·n�p+

∫
�
d�∇ ·u�p−

∫
�
d�(n(u·v)+u(v ·n)+2�n·D(u)−qn) ·�v

+
∫

�
d�2�n·D(�v) ·u−

∫
�
d�(−∇u·v−(v ·∇)u−∇ ·(2�D(u))+∇q) ·�v (65)

If the objective function does not depend on the domain interior (J� =0), the volume terms of
Equation (65) cancel by virtue of u and q satisfying the adjoint equations (42) and (43). We thus
arrive at the following expression for the variation ��L:

��L = �� J−
∫

�
d�u·n�p−

∫
�
d�(n(u·v)+u(v ·n)

+2�n·D(u)−qn) ·�v+
∫

�
d�2�n·D(�v) ·u (66)

For any objective function with J� =0, this is an exact formulation of ��L .‡ In this form, however,
it does not serve for a computation of the desired sensitivities, since �v and �p are unknown.
We therefore have to find an approximation for these quantities. As the geometrical deformations
controlled by our design variables � are in normal direction only, we follow the suggestion of Soto
and Löhner [5] and make a Taylor series expansion for �v and �p:

�v=�(n·∇)v+O(�2) and �p=�(n·∇)p+O(�2) (67)

Terminating the expansion after the linear term and substituting it into Equation (66) then allows
for computing the desired sensitivities. What they look like for ducted flows will be derived in the
remainder of this section.

For ducted flow optimization with fixed inlet and outlet geometries, the only portion of � that
is subject to shape deformations � �=0 is obviously the wall. Conversely, the typical cost functions
of ducted flows do not usually involve the flow quantities on the wall,§ but are rather formulated
as integrals over inlet and/or outlet. This has two implications: There is no explicit dependence of
the cost function on the deformation, �J/��=0, and from Equations (44) and (45) we conclude
that u=0 on the wall. Equation (66) therefore reduces to

��L=−
∫
wall

d�(2�n·D(u)−qn) ·�(n·∇)v (68)

In order to simplify that expression, we express 2n·D(u) as

2n·D(u)=(n·∇)u+∇(u·n) (69)

‡Note that the boundary integrals of Equation (66) correspond to those of the adjoint boundary conditions (22) and
(23)—without, however, the cost function contributions. Therefore, another way of arriving at Equation (66) is as
follows: Write the total variation as ��L=�� J+�v J+�p J and replace the variations w.r.t. v and p by virtue of
the adjoint boundary conditions (22) and (23).
§ If this was, however, the case, i.e. if the objective function was formulated as an integral over the wall, one would
better fall back on the so-called incomplete sensitivities anyway, which do not necessitate an adjoint solution at all
[3, 24].
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With ∇ ·u=0 in � and u=0 at the wall, we follow the reasoning that lead to Equation (30) and
conclude that

(n·∇)un =0 (70)

Using again that un =0 along the wall, we further note that the second term of Equation (69)
cancels:

∇(u·n)=n(n·∇)un+∇‖un =0 (71)

We thus arrive at

2n·D(u)=(n·∇)ut (72)

Similarly,

(n·∇)v=(n·∇)vt (73)

and since

n·((n·∇)vt )=0 (74)

we can finally express the variation of L as

��L=−
∫
wall

d���(n·∇)ut ·(n·∇)vt (75)

The desired sensitivity for an outward movement � at some specific point of the surface is thus

�L
��

=−A�(n·∇)ut ·(n·∇)vt (76)

with A being the surface area affected by this movement. In other words, the surface sensitivities
can be obtained as the dot product of the normal gradients of primal and adjoint velocities.

We emphasize again that the prerequisites for a computation of topological and surface sensitiv-
ities are actually the same: the primal and the adjoint velocity fields. Once these fields are obtained,
both types of sensitivities can be computed—by multiplying either the velocities themselves in
the interior of the domain (Equation (11)) or their normal gradients at the domain boundary
(Equation (76)). It is now instructive to have a closer look at the connection between the two
sensitivity types at the wall: An inward displacement �<0 of the surface produces, according to
Equation (75), a variation of the objective function of

dLsurf∝(n·∇)ut ·(n·∇)vt (77)

As ut =0 at the wall, we can approximate for sufficiently small displacements �:

(n·∇)ut ≈|�|−1uit (78)

where uit is the tangential adjoint velocity in the volume cell i that is adjacent to the location of
the surface perturbation. With the same approximation for the primal velocity, we conclude for
the cost function variation

dLsurf∝uit ·vit (79)
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Increasing, on the other hand, the porosity in cell i gives, according to Equation (11), rise to a
dL topo of

dL topo∝ui ·vi =uit ·vit (80)

where the last equality holds because of the vanishing normal velocity components close to the
wall. Hence, an inward movement of the surface at a specific position on the wall has a similar
impact on the objective function as increasing the porosity in the cell adjacent to this position.
Since both geometric changes constitute a ‘punishment’ of the cell, this result is indeed plausible.

3.1. Example: Dissipated power

As a test case for surface sensitivities, we chose a segment of an air duct—a geometry that was
well studied in previous works [15, 25]. Figure 4 shows the sensitivities w.r.t. dissipated power
for this channel segment. Blue sensitivities correspond to regions where an outward movement of
the surface improves the objective function, whereas the reddish patches inside the white contours
have to be moved inwards in order to decrease the overall dissipation.

As expected, the by far biggest sensitivities are encountered where the geometric curvature is
highest: in the entrance and exit regions of the S-bend. The flow detaches here and gives rise to
regions of backflow further downstream. Consequently, the most prominent areas of favourable
inward movement are adjacent to those backflow regions.

The sensitivity distributions of Figure 4—specifically, the areas of favourable inward or outward
displacement (i.e. the sign of the sensitivity) and the sensitivity peaks in the high-curvature
regions—resemble those presented in [25], where the commercial finite-element-based adjoint
solver PAMFlow was applied to the same air duct segment.

Figure 4. Velocity field inside an air duct segment (a), (c) and sensitivities w.r.t. dissipated power (b), (d):
the air enters the channel from the left-hand side at a Reynolds number of 2500. Cold/hot colours on the
duct surface mark the areas where an outward/inward surface displacement improves the flow passage.

The white contours in (b) and (d) are the isolines of zero sensitivity.
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4. SUMMARY AND OUTLOOK

We derived a continuous adjoint formulation for the steady-state, incompressible Navier–Stokes
equations with Darcy porosity term and frozen turbulence. The general form of the adjoint equa-
tions and boundary conditions, Equations (20)–(23), was further specialized to the typical primal
conditions of ducted flows. Thereby, special emphasis was placed on the cost function versa-
tility of the formulation: While the adjoint equations for ducted flows, Equations (42) and (43),
are independent of the objective function by nature—at least as long as the cost function has
no contribution from the domain interior, the adjoint boundary conditions, Equations (44)–(48),
were expressed in a form that can straightforwardly be adapted to any commonly used objective
function.

Using Equations (11) and (76), respectively, the obtained formulation allows one to compute
topological and surface sensitivities for ducted flows. Their implementation into the professional
finite volume CFD toolbox OpenFOAM was demonstrated for two cost function examples: dissi-
pated power and uniformity of the flow in the outlet plane.

The availability of topological and shape sensitivities inside a professional CFD code and the
flexibility of their implementation w.r.t. changes in the objective function is one vital ingredient
of the intended composite optimization process chain for freeform geometries [25]: topology
optimization for drafting an optimal design from the available installation space and subsequent
fine-tuning via shape sensitivities.

The complementary components of this process chain are (1) efficient optimization algorithms
to deal with the computed topological and surface sensitivity maps and (2) shape update algorithms
to translate the shape sensitivities into a new and smooth shape. For the former, Svanberg’s method
of moving asymptotes [22] was already identified as a suitable candidate in e.g. [12]. Proposed
methods for the latter usually involve mesh morphing, e.g. via a pseudo-shell approach or free-form
deformation [26–28]. From the industrial point of view, the most promising method of shape update
probably relies on a mapping of the sensitivities onto a CAD parametrization of the geometry, as
proposed in [29]. Future work is therefore dedicated to further developing the linkage between
surface sensitivities and CAD parametrizations.
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